VOCABULARY AND FORMULAS

The following list is representative of terminology used in the problems but should not be viewed as all-inclusive. It is recommended that coaches review this list with their Mathletes.

absolute difference absolute value acute angle

additive inverse (opposite)

adjacent angles algorithm

alternate exterior angles alternate interior angles

altitude (height)

apex area

arithmetic mean arithmetic sequence

base 10 binary bisect

box-and-whisker plot

center of chord circle

circumference circumscribe coefficient collinear

combination common denominator

common divisor common factor common fraction common multiple complementary angles composite number compound interest

concentric cone congruent convex

coordinate plane/system coordinates of a point

coplanar

corresponding angles counting numbers counting principle

cube cylinder decagon decimal

degree measure denominator

diagonal of a polygon diagonal of a polyhedron

diameter difference digit digit-sum direct variation

dividend divisible divisor dodecagon dodecahedron

domain of a function

edge
endpoint
equation
equiangular
equidistant
equilateral
evaluate
expected value
exponent

exterior angle of a polygon

factor factorial finite formula

expression

frequency distribution

frustum function GCF

geometric mean geometric sequence height (altitude) hemisphere heptagon hexagon

hypotenuse image(s) of a point (points)

(under a transformation) improper fraction

inequality

infinite series

inscribe integer

interior angle of a polygon

interquartile range

intersection inverse variation irrational number

isosceles lateral edge

lateral surface area lattice point(s)

LCM

linear equation

mean

median of a set of data median of a triangle

midpoint mixed number

mode(s) of a set of data ·

multiple

multiplicative inverse (reciprocal)

natural number nonagon

numerator obtuse angle octagon octahedron odds (probability)

opposite of a number (additive

inverse)
ordered pair
origin
palindrome
parallel
parallelogram
Pascal's Triangle

pentagon

percent increase/decrease

perimeter permutation perpendicular

planar polygon polyhedron prime factorization

prime number	remainder	supplementary angles
principal square root	repeating decimal	system of equations/inequalities
prism	revolution	tangent figures
probability	rhombus	tangent line
product	right angle	term
proper divisor	right circular cone	terminating decimal
proper factor	right circular cylinder	tetrahedron
proper fraction	right polyhedron	total surface area
proportion	right triangle	transformation
pyramid	rotation	translation
	scalene triangle	trapezoid
Pythagorean Triple	scientific notation	triangle
quadrant		triangle triangular numbers
quadrilateral	sector	trisect
quotient	segment of a circle	
radius	segment of a line	twin primes
random	semicircle	union
range of a data set	sequence	unit fraction
range of a function	set	variable
rate	significant digits	vertex
ratio	similar figures	vertical angles
rational number	simple interest	volume
ray	slope .	whole number
real number	slope-intercept form	<i>x</i> -axis
reciprocal (multiplicative	solution set	<i>x</i> -coordinate
inverse)	sphere	<i>x</i> -intercept
rectangle	square	<i>y</i> -axis
reflection	square root	y-coordinate
regular polygon	stem-and-leaf plot	<i>y</i> -intercept
relatively prime	sum	
, ,	•	

The list of formulas below is representative of those needed to solve MATHCOUNTS problems but should not be viewed as the only formulas that may be used. Many other formulas that are useful in problem solving should be discovered and derived by Mathletes.

CID	CH	NAC	ED	FNC	,E;

SURFACE AREA AND VOLUME

west and the same		JONIACE AREA AIVD VOLUME		
Circle	$C = 2 \times \pi \times r = \pi \times d$	Sphere	$SA = 4 \times \pi \times r^2$	
A	REA	Sphere	$V = \frac{4}{3} \times \pi \times r^3$	
Circle	$A = \pi \times r^2$	Rectangular prism	$V = I \times w \times h$	
Square	$A = s^2$	Circular cylinder	$V = \pi \times r^2 \times h$	
Rectangle	$A = I \times w = b \times h$	Circular cone	$V = \frac{1}{3} \times \pi \times r^2 \times h$	
Parallelogram	$A = b \times h$	Pyramid	$V = \frac{1}{3} \times B \times h$	
Trapezoid	$A = \frac{1}{2} (b_1 + b_2) \times h$	·		
Rhombus	$A = \frac{1}{2} \times d_1 \times d_2$			
Triangle	$A = \frac{1}{2} \times b \times h$	Pythagorean Theorem	$c^2 = a^2 + b^2$	
Triangle	$A = \sqrt{s(s-a)(s-b)(s-c)}$	Counting/	$_{n}C_{r}=\frac{n!}{r!(n-r)!}$	
Equilateral triar	$A = \frac{s^2 \sqrt{3}}{4}$	Combinations	" ' $r!(n-r)!$	

MATHCOUNTS 2013-2014

FORMS OF ANSWERS

The following rules explain acceptable forms for answers. Coaches should ensure that Mathletes are familiar with these rules prior to participating at any level of competition. Judges will score competition answers in compliance with these rules for forms of answers.

All answers must be expressed in simplest form. A "common fraction" is to be considered a fraction in the form $\pm \frac{a}{b}$, where a and b are natural numbers and GCF(a, b) = 1. In some cases the term "common fraction" is to be considered a fraction in the form $\frac{A}{B}$, where A and B are algebraic expressions and A and B do not have a common factor. A simplified "mixed number" ("mixed numeral," "mixed fraction") is to be considered a fraction in the form $\pm N \frac{a}{b}$, where N, a and b are natural numbers, a < b and GCF(a, b) = 1. Examples:

Problem: Express 8 divided by 12 as a common fraction.

Answer: $\frac{2}{3}$ Unacceptable: $\frac{4}{6}$ Problem: Express 12 divided by 8 as a common fraction.

Answer: $\frac{3}{2}$ Unacceptable: $\frac{12}{8}$, $1\frac{1}{2}$

Problem: Express the sum of the lengths of the radius and the circumference of a circle with a diameter

of $\frac{1}{4}$ as a common fraction in terms of π .

Problem: Express 20 divided by 12 as a mixed number.

Answer: $\frac{1+2\pi}{8}$ Answer: $1\frac{2}{3}$ Unacceptable: $1\frac{8}{12}$, $\frac{5}{3}$

Ratios should be expressed as simplified common fractions unless otherwise specified. Examples:

Simplified, Acceptable Forms: $\frac{7}{2}$, $\frac{3}{\pi}$, $\frac{4-\pi}{6}$ Unacceptable: $3\frac{1}{2}$, $\frac{1}{4}$, 3.5, 2:1

Radicals must be simplified. A simplified radical must satisfy: 1) no radicands have a factor which possesses the root indicated by the index; 2) no radicands contain fractions; and 3) no radicals appear in the denominator of a fraction. Numbers with fractional exponents are not in radical form. Examples:

Problem: Evaluate $\sqrt{15} \times \sqrt{5}$. Answer: $5\sqrt{3}$ Unacceptable: $\sqrt{75}$

Answers to problems asking for a response in the form of a dollar amount or an unspecified monetary unit (e.g., "How many dollars...," "How much will it cost...," "What is the amount of interest...") should be expressed in the form (\$) a.bc, where a is an integer and b and c are digits. The only exceptions to this rule are when a is zero, in which case it may be omitted, or when b and c are both zero, in which case they may both be omitted. Examples:

Acceptable: 2.35, 0.38, .38, 5.00, 5

Unacceptable: 4.9, 8.0

Units of measurement are not required in answers, but they must be correct if given. When a problem asks for an answer expressed in a specific unit of measure or when a unit of measure is provided in the answer blank, equivalent answers expressed in other units are not acceptable. For example, if a problem asks for the number of ounces and 36 oz is the correct answer, 2 lb 4 oz will not be accepted. If a problem asks for the number of cents and 25 cents is the correct answer, \$0.25 will not be accepted.

Do not make approximations for numbers (e.g., π , $\frac{2}{3}$, $5\sqrt{3}$) in the data given or in solutions unless the problem says to do so.

Do not do any intermediate rounding (other than the "rounding" a calculator performs) when calculating solutions. All rounding should be done at the end of the calculation process.

Scientific notation should be expressed in the form $a \times 10^n$ where a is a decimal, $1 \le |a| < 10$, and n is an integer. Examples:

Problem: Write 6895 in scientific notation.

Answer: 6.895 × 10³

Problem: Write 40,000 in scientific notation.

Answer: 4 × 10⁴ or 4.0 × 10⁴

An answer expressed to a greater or lesser degree of accuracy than called for in the problem will not be accepted. Whole-number answers should be expressed in their whole-number form. Thus, 25.0 will not be accepted for 25, and 25 will not be accepted for 25.0.

The plural form of the units will always be provided in the answer blank, even if the answer appears to require the singular form of the units.